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Abstract

Introduction: Timely trauma care during the "golden hour” is critical to reducing
mortality in military and civilian emergencies. Recent advancements in artificial intelligence
(Al), machine learning, and robotics offer new opportunities to improve outcomes through
autonomous diagnostics, triage, and logistical coordination. However, there remains a
significant gap in integrating these technologies into trauma care systems, particularly in austere
or high-pressure environments. Methods: This study conducted a systematic literature review
to evaluate the effectiveness of Al-driven autonomous systems in trauma care. Databases
searched included PubMed, Scopus, and Web of Science, covering publications from January
2000 to April 2025. Search terms included “Al in trauma care,” “golden hour,” “autonomous
medical systems,” and “emergency response.” Grey literature and institutional reports were also
analyzed. Study quality was assessed using the Newcastle-Ottawa Scale and AMSTAR tools.
Results: Al systems demonstrated high diagnostic accuracy (AUC 0.88-0.92) and significantly
improved triage efficiency (e.g., 18.7-minute reduction in wait time). Autonomous evacuation
using drones reduced mortality by up to 30%, while rapid surgical handoff was associated with
a 66% mortality reduction. Applications in both military and civilian settings showed survival
rates exceeding 86%. Key areas enhanced by Al included injury detection, patient prioritization,
evacuation logistics, and outcome prediction. Discussion: Al-driven systems enhance each
phase of trauma care, particularly within the golden hour. Despite their benefits, challenges
remain, including data biases, variable trauma timelines, and ethical considerations. Proposed
solutions include the development of offline-capable mobile applications and real-time decision-
support tools. Further research is needed to validate Al models and optimize system deployment
in resource-limited environments. Conclusion: Al-driven autonomous trauma care systems
show substantial promise in improving survival and operational efficiency in both military and
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civilian emergencies. Integrating these technologies into trauma response protocols may
redefine standards for emergency care and significantly reduce preventable deaths.
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Introduction

Advances in artificial intelligence (AI), machine learning, and robotics hold transformative
potential for trauma care, particularly in high-stakes military and civilian emergencies. These
technologies offer life-saving capabilities by addressing longstanding challenges in emergency response,
including delays in diagnosis, triage, and evacuation. Despite their promise, a significant gap remains in
effectively integrating Al-driven autonomous systems into existing trauma care infrastructure. This
review aims to bridge that gap by exploring how Al technologies can enhance outcomes in time-critical
trauma scenarios (Worsham et al., 2024; Liu et al., 2023).

In moments where every second determines survival, such as battlefield injuries or civilian mass-
casualty incidents, intelligent systems can dramatically alter the trajectory of care. Through real-time
decision support, automated diagnostics, and robotic interventions, Al-driven platforms are redefining
the speed and precision of trauma responses.

The concept of the "golden hour", the first 60 minutes following injury, is critical for preventing
irreversible physiological damage and reducing mortality rates (Cowley, 1975). The U.S. Department of
Defense institutionalized this concept during the war in Afghanistan, mandating evacuation within one
hour, which led to a marked reduction in combat mortality (Kotwal et al., 2016). Studies show that rapid
surgical intervention within this window reduces mortality by up to 66%, with approximately 68% of
trauma deaths occurring during this period (Annals, 2024). While some critics have questioned the
empirical robustness of the golden hour (Bledsoe, 2002), its importance remains undisputed, particularly
in contemporary conflict zones such as Georgia (Khorram et al., 2022).

Large-scale military operations pose significant challenges for trauma care. The Army Health
System (AHS) must manage high volumes of casualties under severe logistical constraints (Worsham et
al., 2024). Civilian trauma care systems face similar pressures, especially in mass-casualty events, with
polytrauma cases representing up to 38% of injuries treated at forward surgical hospitals (Rai et al., 2011).
Exsanguination alone accounts for 40-60% of preventable trauma deaths, underscoring the need for rapid
haemorrhage control (JRSM, 2015).

Al and autonomous systems are emerging as powerful tools to address these challenges. They
have demonstrated high diagnostic accuracy (AUC 0.88 for critical conditions; 0.89 for haemorrhage
detection) (Hamilton et al., 2021; Liu et al., 2023), and can reduce triage wait times by an average of 18.7
minutes (Char et al., 2024). Autonomous drones, equipped with real-time data analytics, have been shown
to increase survival rates by 30% through faster casualty evacuation (Pamplin et al., 2025). Data-driven
decision-making further optimizes outcomes across the care continuum, with reported diagnostic AUCs
ranging from 0.88 to 0.92 (Hamilton et al., 2021; Meyer et al., 2022).

Trauma care spans four critical phases: pre-hospital stabilization, evacuation, definitive surgical
care, and rehabilitation (Kotwal et al., 2016; Rai et al., 2011). The initial phase emphasizes haemorrhage
control and rapid triage within the golden hour (JRSM, 2015). Evacuation requires timely transport to
advanced surgical facilities (Annals, 2024). Definitive care addresses complex polytrauma cases, while
rehabilitation focuses on functional recovery and return to duty or civilian life (Worsham et al., 2024).
Al enhances each phase through automated diagnostics, intelligent triage, and logistics optimization.
Wearable biosensors and Al-assisted monitoring systems provide continuous physiological assessment,
improving situational awareness and care coordination (Liu et al., 2023; Pamplin et al., 2025).
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Many modern trauma care innovations—such as tourniquets, haemostatic agents, portable
ultrasound devices, telemedicine, and advanced prosthetics—originated in military contexts before being
adapted to civilian healthcare (JRSM, 2015). This military-to-civilian transfer continues with Al
technologies, which now offer advanced capabilities for managing haemorrhage, minimizing delays, and
delivering real-time, autonomous interventions. Conflicts like the Kargil War have highlighted the need
for such innovations (News, 2021), and Al systems are increasingly positioned to meet that need (Liu et
al., 2023; Char et al., 2024).

This review investigates the role of Al-driven autonomous systems in reducing trauma-related
mortality and improving care across all stages, diagnostics, triage, coordination, evacuation, surgical care,
rehabilitation, and return to duty. By examining applications in both military and civilian settings, it
identifies emerging solutions and strategic pathways to enhance trauma outcomes (Worsham et al., 2024;
Kotwal et al., 2016; Rai et al., 2011).

Methodology

A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science

» » «

using targeted search terms, including “Al in trauma care,
“battlefield trauma,

golden hour,

autonomous medical systems,”
” “Al diagnostics,” and “emergency response.” To enhance the scope and inclusivity
of the review, grey literature from platforms such as ResearchGate and institutional reports was also
examined. The search covered publications from January 2000 to April 2025.

Data extraction focused on key study characteristics, including study design, sample size, type of
Al intervention, and reported outcomes, such as mortality rates, diagnostic accuracy (AUC), and triage
wait times.

To ensure methodological rigor, the quality of included studies was assessed using the Newcastle-
Ottawa Scale for observational studies and AMSTAR for systematic reviews. Studies demonstrating robust
methodology, clearly defined outcome measures, and high relevance to trauma-related mortality

reduction were prioritized for synthesis.
Literature Review

The Golden Hour in Trauma Care

The golden hour refers to the critical first 60 minutes following traumatic injury, during which
timely intervention is essential to prevent irreversible damage and reduce mortality (Cowley, 1975). In a
study of 5,737 casualties treated in a forward hospital, Rai et al. (2011) reported a mortality rate of 3.6%
(Rai et al,, 2011). Following a 2009 U.S. Department of Defense mandate to reduce evacuation times,
Kotwal et al. (2016) demonstrated a significant reduction in killed-in-action (KIA) rates (Kotwal et al.,
2016). Similarly, The Annals of Surgery (2024) reported a 66% mortality reduction with rapid surgical
handoff (Annals, 2024). The golden hour remains critical in modern conflicts, including recent military
engagements (Khorram et al., 2022).

Trauma Measurement Scales and Al Interventions

Trauma severity is commonly assessed using scales such as the Trauma and Injury Severity Score
(TRISS), Revised Trauma Score (RTS), and Glasgow Coma Scale (GCS) (Kotwal et al., 2016; Meyer et al.,
2022). Al enhances the functionality of these scales by improving survival predictions, automating
scoring, and optimizing triage, thereby reducing preventable deaths (Char et al., 2024; Hamilton et al.,
2021).

Diagnostic Decision-Making

Al-based diagnostic systems have demonstrated high accuracy in trauma care. Hamilton et al.
(2021) reported an AUC of 0.88 (95% CI: 0.85-0.91) for general trauma diagnostics and 0.92 for sepsis
prediction. Liu et al. (2023) found an AUC of 0.89 for hemorrhage detection. Al applications in
appendicitis diagnosis achieved a sensitivity of 81.08% (Zhang et al., 2022). These tools are especially

4
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relevant in addressing exsanguination, which accounts for 40-60% of trauma-related deaths (JRSM,
2015).

Triage Efficiency

Al significantly improves triage processes. Char et al. (2024) reported a reduction of 18.7 minutes
in triage wait times and a 25% improvement in urgency assessment accuracy. Meyer et al. (2022) found
that Al triage systems achieved an AUC of 0.89, compared to 0.76 for RTS, in mass casualty settings.
Additionally, autonomous drones have been employed to assist in casualty prioritization and evacuation
(Kotwal et al., 2016; Pamplin et al., 2025).

AI-Enhanced Medical Operations and Trauma Care

Al supports real-time decision-making and coordination across trauma care systems, helping to
reduce delays in both military and civilian contexts (Worsham et al., 2024; Kotwal et al., 2016; Char et
al., 2024). Predictive models aid in earlier return to duty, with one study noting a 7% post-operative
infection rate (Rai et al., 2011). Autonomous systems facilitate automated patient transport, with drones
reducing evacuation times by up to 30% (Pamplin et al., 2025; Kotwal et al., 2016).

Surgical intervention rates have reached 83.07% in certain settings (Rai et al., 2011), and
predictive logistics now support real-time blood supply delivery, addressing one of the most critical
bottlenecks in trauma care (Worsham et al., 2024; JRSM, 2015). In civilian applications, Al improves
triage accuracy, outcome prediction, and resource allocation, contributing to mortality reductions of 3.6%
(Rai et al., 2011) and 60-66% (Annals, 2024). Survival rates in advanced trauma systems now exceed 86%
(JRSM, 2015).

Table 1. Mortality Outcomes in Golden Hour Interventions

| Study I Intervention I Outcome |
Rai et al. (2011) |Prompt evacuation  |[3.6% mortality |
Kotwal et al. (2016)  ||Evacuation < 60 min |Reduced KIA rates |
\Annals of Surgery (2024)HRapid surgical handoff||66% reduction in mortality\

Table 2. Trauma Measurement Scales and Al Interventions
| Scalle | Purpose I Al Intervention |
\TRISSHPredicts survival ||Improves prediction (AUC 0.90) [Meyer, 2022] |
IRTS | Assesses vital signs  |[Enhances triage accuracy by 25% [Char, 2024] |
IGCS |[Evaluates consciousness||Automates scoring (AUC 0.88) [Hamilton, 2021]]

Table 3. Diagnostic Performance of Al Systems

| Study | Condition ||AUC (95% ClI)||Sensitivity|
Hamilton et al. (2021)|Sepsis 10.92 (0.89-0.95)|-- |
Liuetal (2023)  |Hemorrhage||0.89 (0.86-0.92)|-- |
Zhang et al. (2022)  |Appendicitis|-- 181.08% |

Table 4. Triage Efficiency with Al Systems

| Study |Wait Time Reduction|| Accuracy Improvement |
Char etal. (2024)  |[18.7 minutes 125% improvement in urgency scoring|
\Elhaddad etal (2024)H15 minutes || \
Meyer et al. (2022) |- IAUC 0.89 vs. 0.76 (RTS benchmark) |
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Discussion

Our proposed Al-driven autonomous trauma care systems are designed to optimize golden hour
interventions and significantly reduce trauma-related mortality (Kotwal et al., 2016; Rai et al., 2011).
Documented reductions in mortality—3.6% in forward hospitals (Rai et al., 2011) and 66% following
rapid surgical handoff (Annals, 2024)—as well as decreased killed-in-action (KIA) rates (Kotwal et al.,
2016) underscore the critical importance of timely, Al-enhanced responses.

The systems also demonstrate high diagnostic accuracy (AUC 0.88-0.89) (Hamilton et al., 2021;
Liu et al., 2023) and improved triage efficiency, which helps address delays and fatal complications such
as hemorrhage, the leading cause of preventable trauma deaths (JRSM, 2015; News, 2021). These
outcomes signal a broader transformation within the Army Health System, particularly in battlefield and
remote trauma care (Worsham et al., 2024; Pamplin et al., 2025).

In civilian settings, the integration of Al has led to survival rates exceeding 86% (JRSM, 2015),
further validating the technology’s cross-sector utility. Nonetheless, significant challenges remain. Data
limitations, algorithmic bias, and model generalizability persist as key barriers (Piliuk et al., 2023). Edge
computing and synthetic datasets may offer solutions by enabling real-time processing and broader
representation across diverse populations (Liu et al., 2023).

The concept of a fixed "golden hour" has also been challenged, with evidence suggesting
variability based on trauma type, setting, and patient condition (Bledsoe, 2002). This underscores the
need to refine Al prediction models for personalized time-to-intervention estimates (Piliuk et al., 2023).

Ethical oversight remains critical in Al integration. Ensuring safety, transparency, and
accountability will be vital for trust and regulatory compliance (Gauff et al., 2024; Rai et al., 2011).

As a practical extension of this work, we propose a mobile application, modeled on the Google
Studio platform, which would offer real-time guidance based on validated AI diagnostic tools (AUC 0.88)
(Hamilton et al., 2021) and triage algorithms (Char et al., 2024). Incorporating offline functionality (Liu
et al., 2023) and mass casualty triage integration (Meyer et al., 2022), the app could reduce casualties by
up to 30% in austere and resource-limited environments (Pamplin et al., 2025). Such a tool could
empower both soldiers and civilians to make rapid, life-saving decisions in the absence of immediate
medical personnel.

To realize this potential, technical, ethical, and safety challenges must be addressed (Piliuk et al.,
2023). Future research should aim to:

e Validate and contextualize golden hour parameters,

e Test Al prototypes in real-world and simulated environments, and

e Refine the mobile app’s interface and algorithms to ensure usability and reliability [Liu
et al., 2023; Pamplin et al., 2025].

Conclusions

Al-driven autonomous trauma care systems are transforming emergency medical response by
enabling faster, more accurate, and highly coordinated interventions during the critical golden hour—the
decisive window in which immediate care can determine survival. Through the integration of advanced
artificial intelligence, these systems streamline diagnostics by rapidly analyzing medical data to detect injuries
with high precision. They improve triage by automatically prioritizing patients based on injury severity,
ensuring that the most critical cases receive prompt attention. Moreover, they enhance logistical coordination,
optimizing the deployment of ambulances, medical personnel, and supplies to minimize treatment delays.
This data-driven, autonomous approach has been shown to significantly reduce mortality rates and improve
long-term functional outcomes, ultimately enhancing survivors’ quality of life. As these technologies continue
to evolve, they offer the potential to redefine trauma care by making emergency responses more intelligent,
efficient, and life-saving.
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